

Material Data Sheet, February 2008

TECAMID 6 GF 30

Chemical Designation : Polyamide 6
DIN-Abbreviation: PA 6 GF 30

Colours, fillers: natural, 30% glass fibres

Main features

strong easily welded

resistant to many oils, greases, diesels and petrol easily bonded

wear resistanthigh dimensional stabilityUV and weather resistantgood heat deformation resistance

electrically insulating easily machined

Preferred Fields

mechanical engineering domestic appliance

gears, couplings and engine construction transport and conveyor technology

automotive engineering electrical engineering

precision engineering packaging and paper processing machinery

Applications

fixing parts, spacers

Properties

Mechanical	dry / moist	standard
------------	-------------	----------

Tensile strength at yield MPa

Elongation at yield %

Tensile strength at break 140 / 110 MPa DIN EN ISO 527

Elongation at break	2,5 / 5	%	DIN EN ISO 527
Modulus of elasticity in tension	8500 / 6000	MPa	DIN EN ISO 527
Modulus of elasticity after flexural test		MPa	
Hardness	147		ISO 2039/1 (Kugeldruck-Härte, 358N)
Impact strength 23° C (Charpy)	55	KJ/m²	DIN EN ISO 179 (Charpy)
Creep rupture strength after 1000 h with static load		MPa	
Time yield limit for 1% elongation after 1000 h	21–35	MPa	
Co-efficient of friction p = 0,05 N/mm ² v=0,6 m/s on steel, hardened and ground	0,46-0,52		
Wear p = 0,05 N/mm ² v=0,6 m/s on steel, hardened and ground		µm/km	

Thermal	dry / moist		standard
Crystalline melting point		°C	
Glass transition temperature	60 / 5	°C	DIN 53 765
Heat distortion temperature HDT, Method A	210	°C	ISO-R 75 Verfahren A (DIN 53 461)
Heat distortion temperature HDT, Method B	220	°C	ISO-R 75 Verfahren B (DIN 53 461)
Max. service temperature			
short term	180	°C	
long term	100	°C	
Thermal conductivity (23° C)	0,28	W/(K⋅m)	
Specific heat (23° C)	1,5	J/g.K	
Coefficient of thermal expansion (23–55°C)	2–3	10 ⁻⁵ 1/K	

February 2008 2

Properties

Electrical	dry / moist		standard
Dielectric constant (10 ⁶ Hz)			
Dielectric loss factor (10 ⁶ Hz)			
Specific volume resistance	9*10^13	$\Omega_{\mathrm{*cm}}$	DIN IEC 60093
Surface resistance	5*10^13	Ω	DIN IEC 60093
Dielectric strength		kV/mm	
Resistance to tracking			

Miscellaneous	dry / moist		standard
Density	1,35	g/cm ³	DIN 53 479
Moisture absorption (23°C/50RH)	2,1	%	DIN EN ISO 62
Water absorption to equilibrium	6,6	%	DIN EN ISO 62
Flammability acc. to UL standard 94	НВ		

(1) Testing of semi-finished products

The above information corresponds with our current knowledge and indicates our products and possible applications. We cannot give a legally binding guarantee of chemical resistance, of certain properties and the suitability of our products and their applications. Our products are not destined for use in medical and dental implants. Existing commercial patents must be observed. Unless otherwise stated, these values represent averages taken from injection moulding samples, dry as moulded. We reserve the right to make technical alterations.

February 2008 3